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Abstract—The growth rates of Kelvin-Helmholtz and Miles instabilities in the case of wave generation by
wind are compared quantitatively as a function of the thickness of the boundary layer in the air. For a wind
velocity greater than the threshold of Kelvin—Helmholtz instability and in the limit of a thin boundary layer with
a thickness smaller than the wavelength of a perturbation, a parameter region is found where the Kelvin—Helm-
holtz instability dominates over the Miles instability. It
of air dominates if the thickness of the boundary layer is either too large or extremely small.

1. INTRODUCTION

Sea wave generation by wind has been studied
intensively since the classical investigations by Kelvin
in the middle of the last century. At present, at least two
main mechanisms of the onset of instabilities at the air—
water interface are known. The first mechanism is asso-
ciated with the Kelvin—-Helmholtz instability or the
instability of a tangential discontinuity at the interface
between two ideal incompressible fluids (see, for exam-
ple, [11). Assume that the ratio € = p,/p, of the densities
of the upper p, and lower p, fluids is small. For exam-
ple, € = 1.24 x 107> < 1 in the case of air and water.
Then the equation for the complex phase velocity c of
surface waves can be written accurately to O(e) in the
form

K- = —ek’Us, (1)

where Uy is the wind velocity, which is assumed to be
parallel to the perturbation vector k;

0f = Thlg(1- )+ k] @)

is the dispersion relation for gravity—capillary waves in
the absence of wind; g is the acceleration of gravity;
and o is the surface tension. It follows from (1) that the
Kelvin-Helmholtz instability occurs when the critical
wind velocity

1
Je
is exceeded. This velocity is determined by the minimum
phase velocity Uy, = min{w,/k} of surface gravity—cap-
illary waves in the absence of wind. When the threshold

velocity is exceeded, i.e., when Uy > Uy, the maximum
growth rate of instability lies in the transition gravity—

Ucr = Umin (3)

is shown that the Miles instability due to the viscosity

capillary region of the spectrum with k ~ ko = g/a
(ko = 3.664 cm™" and U,, = 660 cm/s for air and water).
The instability is aperiodic in character, because the
real part of the phase velocity of surface waves vanishes
accurately to O(e) if Uy > U,

The second mechanism of wave generation by wind
is related to the Miles instability, which is due to fluid
viscosity [2—4]. Viscosity causes a boundary layer to
form in the upper light fluid near the interface. This
instability is due to a shear flow U = U(y) in the bound-
ary layer, where y is the vertical coordinate measured
from the interface. It is assumed that the mean flow in
the lower heavy fluid is negligibly small (U(0) = 0) and
that the velocity of the upper fluid U = U, = const
beyond the boundary layer. The Miles instability occurs
at wind velocities that are much smaller than U,,. The
equation for the phase velocity c takes the form [4]

K (c+2ikv,) - op = ¥, +iY; 4)

where v, is the coefficient of viscosity of the lower
fluid, and the real quantities 7, and y; depend on the vis-
cosity of the upper fluid and the phase velocity c. A com-
parison of equations (1) and (4) shows that, if Up > U,

Im(c) > 2kv,, Iy, + ek*Ug |, Iyl << kU, and k ~ kg
(whence it follows that Re(c) < Im(c)), then the
Kelvin—Helmholtz instability dominates: otherwise,
the Miles instability dominates. It should be empha-
sized that, in this work, the thickness of the boundary
layer is assumed to be smaller than or on the order of

-1 . . . . .
kg ; i.e., this thickness is smaller than 1 cm in the case
of air and water.

We notice that the Phillips mechanism [5] plays an
important role in wave generation by wind in the grav-
itation region of the spectrum. This mechanism lies in
the resonance generation of surface waves by turbulent
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- TWO MECHANISMS OF SURFACE WAVE GENERATION 371

fluctuations of pressure in the upper fluid. However, we
restrict ourselves to perturbations on scales k ~ k, =

Jg/ o, when the Phillips mechanism may be disre-
garded.

Within the framework of the Kelvin—-Helmholtz
approach, a nonlinear stage of the onset of instability
can be investigated. On the basis of perturbation theory,
a nonlinear theory of Kelvin—Helmholtz instability was
developed in [6] for a model of an ideal fluid. The char-
acteristic slope of the interface was used as a small
parameter. It was shown that nonlinearity in the first
nonvanishing order in the amplitude of oscillations
does not stabilize instability and leads to blast oscilla-
tion growth, which can be responsible for foam forma-
tion on the sea surface. This inference is in good agree-
ment with observations, according to which a sharp
increase in the fraction of the sea surface occupied by
foam occurs at wind velocities U = 6 m/s [7-10]. At the
same time, unlike the Kelvin—Helmholtz instability, the
Miles instability does not have a threshold at U ~ 6 m/s
and grows continuously with wind velocity in this
region of velocities. Nonlinear generalizations of the
Miles theory (see, for example, [11, 12]) also do not
predict a threshold at U ~ 6 m/s. In this connection, a
comparison between the growth rates of Kelvin—-Helm-
holtz and Miles instabilities at U ~ U,,, which is the aim
of this study, is of great importance. In particular, it is
shown that the Kelvin-Helmholtz mechanism domi-
nates over the Miles mechanism as the supercriticality

d=( Ué - UZ, ) Uf, increases; and a sufficient value of

supercriticality at which this domination occurs
depends considerably on the thickness of the boundary
layer h and the viscosity of the upper fluid (air).

The plan of this paper is as follows. Section 2 for-
mulates a boundary problem for an inhomogeneous
Orr-Sommerfeld equation, which is used to derive an
equation of type (4) for the complex phase velocity c of
surface waves. In Section 3, this boundary problem is
solved for a specific profile of wind velocity U(y) =
Uy(1 — ¢ under an additional condition khR > 1,
where R =(Uyh)/ v, is the Reynolds number and v, is the
kinematic viscosity of the upper fluid. It is shown that
the Miles instability dominates in the case of kh ~ 1. In
the next section, the solutions obtained in Section 3 are
found to be greatly simplified in the limit of a thin (com-
pared to the wavelength) boundary layer, R™! < kh < 1.
It is in this case that the domination of the Kelvin—
Helmholtz mechanism turns out to be possible pro-
vided that an additional condition kh(khR)"? < § is ful-
filled. In the same section, the limit of a thin boundary
layer, such that khR << 1 and kh < 1, is also discussed.
It is shown that instability in this case depends only
weakly on a specific profile of wind velocity U(y), and
the Kelvin—-Helmholtz mechanism dominates under an
additional condition 2/R < §. In the final section, the
results obtained are applied to an air flow over the water
surface. It is indicated that, in real physical situations,
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the domination of Kelvin—Helmholtz instability is most
probable when the air flows around the crests of steep
sea waves, where the local wind velocity increases. The
results of numerical simulation of the dependence c(k)
in the region khR ~ 1, where analytic results cannot be
obtained, are also given in this section. In particular, the
thickness of the boundary layer is found at which the
growth rate of Kelvin—Helmholtz instability is maxi-
mum with respect to the Miles growth rate when the
other parameters of the system are fixed.

2. BASIC EQUATIONS

Let us consider the flow of two viscous incompress-
ible fluids whose unperturbed interface is horizontal.
We will assume that the flow in the boundary layer of
the upper light fluid is turbulent; however, the Reynolds
number is considered to be large but finite, so that the
viscosity of this fluid must be taken into account explic-
itly. Following [2-4], we will consider the so-called
quasi-laminar model, in which the flow of the upper
fluid is assumed to be plane-parallel and is described by
the horizontal and vertical coordinates x and y, respec-
tively. The velocity profile U = (U(y), 0) of an unper-
turbed flow of the upper fluid is obtained by averaging
the horizontal velocity of the actual turbulent motion of
the unperturbed flow of this fluid over the coordinate
transverse to the (x, y)-plane. We superimpose a har-
monic perturbation with wave vector k = (k, 0) on the
uniform flow with velocity profile U(y). The coordinate
of the perturbed fluid interface takes the form

ikx —ikct

yO = a(t)e ’ (5)

Thus, in the quasi-laminar model, the presence of tur-
bulent fluctuations in the velocity of the upper fluid is
taken into account in choosing the profile of wind
velocity and is disregarded in considering small oscil-
lations of this flow.

We introduce dimensionless variables in which both
the characteristic thickness h of the boundary layer in the
upper fluid near the interface and the asymptotic value of
the unperturbed velocity of the upper light fluid
U, . = Uy are equal to unity. We neglect the mean
flow in the lower heavy fluid; i.e., U(y) =0 for y < y,.

For describing perturbations (5) against the back-

ground shear flow, Benjamin [13] introduced the curvi-
linear coordinates

a(t) = aye

.M =y-ae*®™,  (6)

in which equation (5) has the form 1 = 0 accurate to the
first-order terms with respect to ka. In this case, it is
convenient to represent the stream function  as

v(& )

" .
& - X—-l(lel E+in)

n
= [1U) = cldn + [F) + UG - cle™ae™. "
0
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Then, linearization of the Navier—Stokes equations
leads to the inhomogeneous Orr—Sommerfeld equation
for F(1)

(U=c)(F'-k'F)-U"F

- 3)
= ”(LR[F“’ PR+ K F (U —2kU™)e ™M,

where R is the Reynolds number, which is equal to
R = Uphlv, if n > 0 and equal to R = Uph/v, if n <0;
and v, and v, are the coefficients of kinematic viscosity
of the lower and upper fluids, respectively.

In the linear approximation accurate to O(k?a?), the
kinematic condition at the fluid interface has the form

—ikcyg= oy . Writing this relation in (&, 17)-coor-

Ox |y=1y,
dinates and using formula (7) for the stream function,
we obtain in the linear approximation that

F@O)=c. 9)

The continuity of the horizontal velocity at the interface
determines the second kinematic condition. We repre-
sent this fluid velocity as

V| = uyy-—c, (10)
9y |y =

where the quantity u is to be determined. In the curvi-
linear (&, n)-coordinates, it follows from (7) and (10)
that

F'(0) = — U'(0) +u. (11)

In view of the initial assumption, there is no mean
flow in the lower fluid (UMl <o = 0). As a result, the
Orr-Sommerfeld equation (8) reduces to a homoge-
neous differential equation with constant coefficients
whose general solution, decreasing as 1| — —oo, has
the form

2 3 n
Flyco = Cié'"+ ™" 7™, (12)

where the unknown constants C, and C, are determined
from the kinematic conditions (9) and (11). The
unknown quantities u and ¢ can be found using the
dynamic conditions imposed on the stress tensor G at
the interface (i.e., at n =0):

o6, =0,, o = cg}'—p,aszzeikg, (13)
where the indices 1 and 2 relate to the lower and upper
fluids, respectively. We represent the components of the

stress tensor for a harmonic perturbation in the upper
fluid as

F'(0 ik
,g)Pzae 3

o, = — po-2ik

n=0

(14)
(pO, G;"V)In=o = pz(P, T)ae'kg,
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where p, is the normal pressure at 1 = 0. Henceforth,
R = Ugyhlv,. Using formula (7) and the definition for 6
given in [1], we linearize the horizontal component of
the Navier-Stokes equation. Switching next to the cur-
vilinear coordinates, we obtain the following relations
for P and T (see [4, 13]):

P = kZJ(U—(.~)len -ﬁ{
0

x[k2F'(O)+J(k4F—k2U"e'k")zin], (15)

0

T = I%[F"(O) +k’c+ U"(0)].

The linearization of the vertical component of the
Navier—Stokes equation also yields the equivalent rela-
tion for P:

P = U'F—(U—C)F'—L
kR (16)

X [F" = k2F + (U™ = kU")e "1, 2o
The stress tensor in the lower fluid is obtained by

substituting v, for v, and p, = 1/€ for p, = | and by tak-
ing into account that U(m) = 0 forn <O0.

We will assume that |c[/kv, > 1. From (9) and
(11)—(14), we find the boundary conditions for the Orr—
Sommerfeld equation (8) in the upper fluid

F(0) = ¢, F'(0) =-U'(0)+kc, (17

as well as the equation of type (4) for the complex
phase velocity c of surface waves [4]

2 1
(c+2ikv)) - =% = 5(P+2ik5@+ir),
k k R
(18)
€ = P2 <1,
P

where w, is given by formula (2).

Two other boundary conditions for the Orr—Som-
merfeld equation (8) follow from the finiteness of the
perturbation:

F,F|,,.—0. (19)

Equation (8) subject to the boundary conditions (17)
and (19) and equations (15) and (18) form a closed sys-
tem of eigenvalue equations for the complex phase
velocity ¢ of surface waves. ]
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3. SOLUTION TO THE EIGENVALUE PROBLEM
IN THE CASE OF A SPECIFIC WIND VELOCITY
PROFILE FOR kR > 1

As an approximation of the unperturbed wind veloc-
ity profile U(n), it is convenient to take the function

Um) = Uy(l -

This choice of the velocity profile makes it possible to
obtain an explicit solution for the inviscid part of the
Orr—Sommerfeld equation (8)—the so-called Rayleigh
equation

—n/h —
e"M=1-e".

(20)

(U=c)(F'=k*F)-U"F = 0. Q1)

On the other hand, the fact that the curvature of the
velocity profile U"(0) # O is other than zero atm =0
means that the complex velocity ¢ varies only slightly
under small variations of profile (20). Previously, spe-
cific profiles U(n) that admitted explicit solutions to the
Orr—Sommerfeld equation were also suggested [13];
however, the curvature U"(0) = O in those examples.
This is a very special case, because U"(0) appears
explicitly in the asymptotic expansion of the solutions
to the Orr—Sommerfeld equation (8) as kAR —= oo [15]
and the vanishing of the curvature qualitatively changes
these solutions.

Turning back to the velocity profile (20), we make the
following substitution in the Rayleigh equation (21):

-Mm-n,)

z=1-e , 0= (1-2)"F, (22)

where the quantity m, is defined by the condition
Um,) =c;i.e.,n.=-In(l —c). As aresult, equation (21)
reduces to the hypergeometric equation

(1-2)z¢" -2k +1)z0'+¢ = 0. (23)

As | — o« and z — 1, the boundary conditions
require that a solution to (23) be expressed through the
standard hypergeometric function in the neighborhood
ofz=1:

0 = aF(k+ K+ 1, k—nk2+1,2k+1,1-2),
(24)
o = const.

Function (24) is a linear combination of two hypergeo-
metric functions of z, one of which is regular and the
other has a logarithmic singularity as 1 — 1. and
z — 0[14]. As aresult, in the neighborhood of 1 — 1,
the solution of the Rayleigh equation (21) that satisfies
the boundary conditions (19) can be written as

al'(1 +2k)

Tk + k2 + DDk = N+ 1)
) {[w(k+ K>+ 1)+ y(k— k" +1)=y(2)]

x(M-n)-1+M-n)In(M-n)+(y-k)(n-n)},

FR=

(25)
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where I" and y are the standard gamma function and psi
function and y = 0.5772... is the Euler constant.

The solutions of the Rayleigh equation (21) offer a
close approximation of the solutions of the Orr—Som-
merfeld equation (8) everywhere except in narrow lay-
ers in which the viscosity of the upper fluid is impor-
tant. In the vicinity of the so-called coincidence layer,
where n — 1, and U(n) — ¢, resonance phenomena
occur due to the coincidence between the velocity of
the main flow U(n) and the phase velocity of surface
waves c. The viscous right-hand side of the Orr—Som-
merfeld equation (8) becomes important. The thickness
of the coincidence layer has the order = 1/(kR)'?, and
the solutions of (8) are expressed in powers of [t in the
neighborhood of n = 0. In the general case, there is a
viscous sublayer of thickness 1/(kR)'? in the neighbor-
hood of = 0, where the viscous terms of the Orr—Som-
merfeld equation are also of importance. However,
Re(c) — 0 and . — 0 near the Kelvin—-Helmholtz
instability threshold; therefore, the viscous sublayer
merges with the coincidence layer and all solutions are
expanded in powers of the parameter pn [15]. In the
zeroth order in W, the general solution of the Orr—Som-
merfeld equation in the coincidence layer has the form

F = B, +B,0 + B3x1(0), (26)

=M - NN, Bi,3 = const, x3(0) =
[Lao] 19"J@)7'H§}§[ (i0") 3’2] and H'!) is the Han-

kel function of the first kind. In the region 8 — oo,
the terms up to first order must be retained in the
expansion in powers of p. Taking into account that
X3(0)lg - .. — 0, we obtain

where 0

F =B, +p,0+ B o) U,(("“))elne,

(27
where we may set U"(m,.)/U(M,) = U"(0)U'(0) = -
because 1, is small. The unknown coefficients B, B,, B,

and o are found from the conditions of sewing the outer
(25) and inner (27) expansions and from the boundary

conditions (17) at = 0. In the limitn, — O, p — 0,
and |c| < U, we obtain from (16) that

: F"(O)

~ kR

= {-T(k+ k> + DTk — Ak + 1)}/{1*(1

(28)

+2k)|:\|l(k+ JEE+ 1)+ (k=K +1)

x3(0)
-y2)+y-k+ Inu+“x3(0)]}.
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Since p is small in view of the initial assumption, equa-
tion (28) is greatly simplified under the additional con-
dition k ~ 1:

T(k+ k> + Dk = K2+ 1) %3(0)

b= T(1 +2k) 2 (0)

(29)

Thus, for k greater than or on the order of unity, the
.terms that depend explicitly on the coefficient of vis-
cosity play a leading part. Therefore, the initial assump-
tion . — O is violated, and the Miles instability dom-
inates over the Kelvin—Helmholtz instability. Physi-
cally, this result is quite reasonable, because the
dependence of the growth rate on the structure of the
boundary layer is of importance when its thickness is
greater than or on the order of the perturbation wave-
length, and this layer can in no way be approximated by
a tangential discontinuity as is done in the Kelvin—
Helmholtz theory. Moreover, as seen from equation
(28), even without considering the viscosity of the
upper fluid, the growth rate in this case will be different
from the Kelvin—Helmholtz growth rate.

In the conclusion of this section, we note that the
possibility of reducing the Rayleigh equation to the
hypergeometric equation for the velocity profile (20)
enables us to determine ¢ without the additional
assumption |c| < | in the case when the coincidence
layer and the viscous layer are separated asymptoti-
cally. However, this is beyond the scope of this study.

4, THIN BOUNDARY LAYER LIMIT
4.1. Limit of k <1, kR > 1

If the thickness of the boundary layer /h is suffi-
ciently smaller than the wavelength; ie., k < 1 in
dimensionless variables but the condition kR > 1 still
holds, then formulas (25) and (28) are greatly simpli-
fied. In particular, accurate to O(k?), we have

Fp=oalk+(M-n)-k(M-1)In(m-n,)]

%3(0)k
P=-k/| | -=—==1,
( x;(O)u) (30)
x3(0)
= - 1.1153 -i0.6440..
X3(0)
Similarly, it follows from (15) that the tangential stress
x3(0)  x3(0) :
T = kKpl = & = 0.6858 +i1.1880... (31
M@’ 10 Gh

is on the order of k?\L and, consequently, is negligibly
small compared to P.

The Kelvin—Helmholtz theory states that P + iT =
—kU¢ =—k; therefore, if k/p ~ 1, the Miles instability
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obviously dominates. If k/p << I, equations (18), (30),
and (31) yield the following relation for the complex

phase catk =k, = Jg/a:

2 . 2 X3(0)k
k™(c+2ikv))" = [ o+ Xz(O)NJ (32)

where 0 = (Ué - Uf, )/UCZr is the supercriticality, and
the critical velocity U, is given by equation (3).
According to (32), the Kelvin—Helmholtz instability
dominates over the Miles instability under the follow-
ing conditions:

k k
~<], =<3, <. (33
i m u )

The Miles instability plays a leading part when k/p ~ 8.

We notice that, in the case of a thin boundary layer
(k < 1), an expansion of type (30) can be obtained from
the approximate Heisenberg solutions of the Rayleigh
equation (21) for an arbitrary velocity profile U(n) [15].

4.2. Limitof k <1, kR <]

If the thickness of the boundary layer is so small that
kR is smaller than or on the order of unity, the validity
of asymptotic expansions in p is violated. However, if
the additional condition kR <€ 1 is fulfilled, it is possible
to obtain the following analytic relation for P and T (see
the Appendix):

P+2ik I(? )+1T = —k(l +R)+O(kA/:k‘,). (34)

An analysis of (18) and (34), similar to that of equation
(32) in Section 4.1, shows that, when

k<1, kR<1, 2/R <39, (35)

the Kelvin-Helmholtz instability dominates over the
Miles instability. In view of the proportionality
between the Reynolds number R and the thickness of
the boundary layer h, conditions (35) are valid for val-
ues of /1 that are not too small.

If conditions (33) and (35) are satisfied, the depen-
dence of Im(c) on k will have a sharp peak at k ~ kg,
which is due to the Kelvin—Helmholtz instability.
Beyond the neighborhood of k, the imaginary part of
the phase velocity Im(c) is significantly smaller, and the
real part is on the order of the phase velocity of gravity—
capillary waves w,/k in the absence of wind.

We notice that, physically, the distinction between
the Kelvin—Helmholtz and Miles instabilities lies in the
fact that the former results from the pressure that arises
during air flow around a wavy surface and is in phase
with the elevation of the surface. Therefore, the growth
rate of Kelvin—Helmholtz instability is positive if this
pressure is greater than the damping action of the grav-
ity and capillary forces. The latter—the Miles instabil-
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ity—is mainly due to the normal stress, which is in
phase with the slope of the wavy surface and is greater
in magnitude than dissipative forces. However, as indi-
cated in the next section, the tangential stress also con-
tributes significantly to the Miles instability in the inter-
mediate case k < 1, kR ~ 1.

5. CONCLUDING REMARKS
In the specific case of air flow over the water surface,

where k = ky= /g/ o =3.664 cm™, v,=0.15 cm?/s, and
U, = 660 cm/s, the above results concerning the
regions in which the Kelvin-Helmholtz instability
dominates take the following form:

(a) for sufficiently thin boundary layers, it follows
from (33) that 0.008 cm <€ h <€ 0.27 cm, & > (h/(6.6 X
1072 cm))*3;

(b) in the limit of very thin boundary layers, it fol-
lows from (35) that 1 < 0.008 cm, > 4.5x 10 cm/h.

In the intermediate region k << 1, kR ~ 1 between the
limits (a) and (b), the thickness of the boundary layer h
is on the order of the thickness of the coincidence layer,
and asymptotic techniques cannot be applied to obtain
analytical results. In the case of air and water, the com-
plex phase velocity c(k) at k ~ ky was calculated numer-
ically in this region. The boundary problem (8), (17),
(19) was solved by the orthogonal factorization method
[15, 16] for each value of c, after which the roots of (18)
were found by the modified Newton method. As a
result, the thickness of the boundary layer was found to
take on the value i — 0.02/k, = 0.0054 cm, at which
the Kelvin—Helmholtz instability dominates at the small-
est supercriticality 8 = (Ug — U ) U . At this thick-
ness of the boundary layer, Re(c) < Im(c); i.e., the
Kelvin—Helmholtz mechanism plays a crucial role for
6>0.1. In addition, the validity of the formulas
obtained in Sections 3, 4.1, and 4.2 is completely con-
firmed by numerical calculations. We notice that the
numerical calculations also show that, in the limit k < |,
kR ~ 1, the contribution of the tangential stress to the
growth rate of Miles instability is generally on the same
order as that of the normal stress, unlike the limits con-
sidered in Sections 3, 4.1, and 4.2, where the contribu-
tion of the normal stress is predominant.

Thus, on the basis of analytic and numerical results,
we arrive at the conclusion that, for the Kelvin—Helm-
holtz instability to dominate over the Miles instability,
the wind speed must be noticeably greater (by no less
than 10%) than the critical value U, = 660 cm/s. At the
same time, the thickness of the boundary layer must be
neither too large, so that the perturbation wavelength is
greater than h, nor too small, because an abrupt change
in the velocity U(n) causes the viscous terms to domi-
nate in the growth rate of instability.

For real sea waves, the domination of Kelvin—Helm-
holtz instability is most probable both during abrupt
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gusts and near the crests of steep sea waves, because the
air flow around the latter causes the local wind velocity
to increase up to values higher than the threshold value
u..

We note that the nonlinear theory of Kelvin—-Helm-
holtz instability developed in [6] used the smallness
condition for the supercriticality 8. For this reason, the
applicability of this theory to wave generation by wind
is associated at least with rather stringent limitations on
the thickness of the boundary layer 4 in the air near the
water surface. Nevertheless, condition (33) is indicative
of a wide region of validity of the Kelvin—-Helmholtz
theory in studies of interface instability either in the
case where the kinematic viscosity of the upper fluid is
significantly smaller than that of air or under noticeable
changes in other parameters of the system under con-
sideration, such as the surface tension 0., the accelera-
tion of gravity g, and the density ratio € = p,/p,.
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APPENDIX

Let us consider the limit of a small thickness of the
boundary layer h such that k < | and kR < 1. In the
region n > 1, the Orr—Sommerfeld equation (8)
reduces to a homogeneous differential equation with
constant coefficients. Its general solution is given by a
sum of two exponential functions:

-k ~A
F=oe "+0e ", o, = const,

A = JK 4+ ikR(1 =c).

The applicability of (36) is violated in a narrow layer
with the characteristic thickness h = 1 near the inter-
face. At the same time, solution (36) varies on the
scales k™! and (kR)""2, which are much larger than h.
The velocity profile U(n) is closely approximated on
these scales by a velocity jump from U(0) = O up to
U0 + 0) = Uy, and, as shown below, the quantities P
and T depend only slightly on the specific form of the
profile U(n). In the limit kR << 1, if An} << 1, the right-
hand side dominates in the Orr—Sommerfeld equation
and the latter reduces to an inhomogeneous differential
equation with constant coefficients

(36)

ikLR[FW 2k F + k' F+ (U - 2kU™)e ™" = 0.(37)
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Straightforward substitution demonstrates that its solu-
tion has the form

F = (C +Cm)e"+(Cy+ Cm)e ™"

oo

+ eknje—nn U'(m)dn,
n

where An < | and C, , 3 4 are arbitrary constants. We
will assume that the wind velocity is so much greater
than the threshold of Kelvin—Helmholtz instability (3)
that the phase velocity may be neglected (¢ — 0)
in calculating the right-hand side of (18). In this case,

A= Jk'+ikR. Expanding the homogeneous part of
this solution in powers of 1 up to the first-order terms
for kn < | and satisfying the boundary conditions (17),
we obtain

F = =(1+km)[e ™" U'(n)dn

0 (38)

oo

+ eknje"zk"U'(n)dn.
n

It is convenient to write the first integral in this formula
as

oo

—je‘““U'(n)dn = —1+kB,
0

3 (39)
B = -2 (Um) - dn,
0

where B = O(1) if U'(n)) decreases as 1} — o= no slower
than 1/12, which is assumed to be fulfilled below. The
regions of validity of solutions (36) and (38) overlap for
n> 1, <1, and kn < 1. In this case, B — 0.
Therefore, expanding (36) up to the first-order terms in
7N and equating (36) to (38), we obtain a solution of the
Orr—Sommerfeld equation (8) that is uniformly suitable
atany n:

F=oe™so,e™+e j U(M)dn,  (40)

n

where
o = -1 +kB+2———-—k(__k]++fB), @l
o, = -1+kB-0q,,

and the constant B is given by (39). Substituting (40)
into (8), one can verify that corrections to solution (40)
are on the order of k’R. We notice that the Reynolds
number R is proportional to the thickness of the bound-

ary layer /. Therefore, it is convenient to use the quan-
tity

R _ U

k kv, “42)
which is independent of h, to estimate different terms in
(4). We assume that R/k > 1 (specifically, R/k = R/ky =
1200 for air and water). Under this condition, A =
JikR (1 + O(k/R)) and equations (41) are greatly sim-
plified:

0, = -x—l’f—+i-2—"+k3+o(kﬁ),
likR R R

o, = 2—k—i%+0(kA/E)
T Jikk R R
From (15), (40), and (43), we find the leading-order

(in k/R) corrections to the pressure Py = —k in the
Kelvin—-Helmholtz theory:

(43)

2k K’
P = —k(l + ———) + 0(—),
JikR R
2k° K’
T =128 4 0(——).
JikR R
At the same time, the viscous part of the normal stress
tensor (14) 2ikF'(0)/R = -2ikU'(0)/ R dominates over
corrections (44) in view of R/k = 1 unless U'(0) is an
abnormally small quantity compared to Uy/h. To be
more specific, we set U'(0) = Uy/h = 1 (this is the case
for (20)). Then we obtain the final relation for the right-
hand side of equation (18)

Wi = 4143 ol 1)
P+2ik R +iT = kI+R + 0| k %)

i.e., we arrive at equation (34), which was used in Sec-
tion 4.2.

(44)
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